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Abstract. The paper describes the application of boundary-integral-equation methods to solve two problems in
acoustic and electromagnetic aerospace research. The first problem is concerned with the structural-acoustic analy-
sis of solar arrays of satellites. This analysis involves the solution of a boundary-integral equation for determining
the acoustic pressure jump across the solar panels. The solar panels are geometrically modelled as screens (i.e.
open surfaces in three-dimensional space). The second problem is related to the radar cross section prediction of
engine inlets of fighter aircraft. The prediction requires the calculation of the scattered electromagnetic field when
the inlet is illuminated by a radar beam. Engine inlets are modelled as three-dimensional perfectly conducting
cavity-like screens. The scattered electric field is obtained by the numerical solution of the Electric-Field Integral
Equation.
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1. Introduction

In aerospace research, boundary-integral-equation methods are frequently used in various
fields of applied mechanics for solving problems around thin obstacles. Geometrically, these
thin obstacles are modelled as screens,i.e. open surfaces in three-dimensional space. Since
about 1950 many investigations have been performed to analyse the aerodynamic flow about
(parts of) aircraft. In particular, lifting-surface theory has been applied extensively to predict
lift distributions on wings and propeller blades. Appropriate boundary-integral equations were
derived, and suitable numerical methods to solve these equations were developed.

Before the advent of the digital computer, boundary-integral equations were solved by
means of basis functions with support on the whole boundary. Such global basis functions
were advantageous from the point of view that the number of unknown coefficients was
limited, so that the equations could be solved by the computational tools which were avail-
able at that time. In 1950 an important method for predicting the lift distribution on wings
in the subsonic speed regime was presented by Multhopp [1]. In this method the wing is
approximated by a plane sheet extending over the wing-platform. The mathematical problem
is formulated in terms of an integral equation which relates the prescribed normal velocity
on the wing surface with the pressure distribution over the wing surface. The pressure dis-
tribution is approximated by trigonometric basis functions satisfying the correct behaviour
at the leading and trailing edges. The coefficients of the basis functions are determined by
means of a collocation method. When digital computers became available, the convergence
of this method was investigated by Zandbergenet al. in the 1960’s. Lack of convergence was
observed due to poor modelling of the singular behaviour of the kernel function. The method
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was improved by Zandbergenet al. in [2]. Also, the range of applicability was extended
to kinked wings [3]. The extension of this method to complex aircraft configurations (e.g.
configurations with extended slats and flaps consisting of several segments) is, however, far
from trivial, because the global basis functions are defined on a single, simply connected
domain that can be mapped onto a simple rectangular sheet. Instead, numerical methods were
developed that use basis functions with local support. These so-called panel methods appear
to be more tractable for treating complex geometries. Since the mid 1960’s panel methods
have been developed to the extent that they are routinely being used in the aerospace industry.

The major drawback of boundary-integral-equation methods in aerodynamics is that their
range of applicability is restricted to linear inviscid potential flow,i.e. nonlinear compress-
ibility effects cannot be taken into account. As a consequence, transonic flows with shock
waves cannot be treated by boundary-integral-equation methods. Therefore, from one of the
major fields in aerospace research,viz. the analysis of aerodynamic flow around aircraft,
there seem to be no pushing factors for further development of boundary-integral-equation
methods. Instead, since about the mid 70’s the investigations in this field have been addressed
to the development of computational methods for the solution of nonlinear flows governed
by the full-potential equation, Euler equations and Navier-Stokes equations. However, new
challenges have appeared for the development and application of boundary-integral-equation
methods in other fields of aerospace research. In the present paper the following problems are
discussed:

Structural-acoustic analysis of solar arrays on satellites
Modern spacecraft are equipped with large light-weight solar arrays. A solar array consists of
a stack of solar panels, which is unfolded in orbit flight. During the launching phase the solar
panels are folded into small packages and the distance between the panels is small. Then the
solar array is exposed to severe dynamic loads which may affect the dynamic behaviour of the
satellite. Therefore, it is a prerequisite to analyse the dynamic behaviour of the solar arrays in
interaction with the main structure of the satellite and to assess the effects of the vibrating air.
The coupled structural-acoustic analysis of the solar array and the surrounding air involves
the solution of a hyper-singular integral equation for determining the acoustic pressure jump
across the solar panels. The panels are geometrically modelled as screens. The hyper-singular
integral equation is numerically solved by a boundary-element method, where the acoustic
pressure jump is approximated by piecewise linear functions on a triangular surface grid.

Radar-Cross-Section (RCS) calculations
The development of prediction techniques for radar cross sections of aerospace platforms is
motivated by the need to have tools available for both radar analysis and design of military
aerospace vehicles. The vulnerability of fighter aircraft in several types of missions is among
others determined by their detectability by radar systems of which the frequency can vary
typically from 0·1 to 94 GHz, corresponding with wavelengths of 3 meters to 3 millimeters.
RCS predictions of aerospace platforms require the calculation of the fields scattered by the
platform when illuminated by a plane electromagnetic wave (the radar beam). When illu-
minated nose-on, the engine inlets of aircraft account for approximately 90 % of the radar
signature due to multiple reflections in these inlets. The interior surface of engine inlets is
modelled as a three-dimensional perfectly conducting cavity-like screen. Then, the scattered
electric field is obtained from the numerical solution of the Electric-Field Integral Equation
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Boundary-integral-equation methods for screen problems145

Figure 1. Solar panel with coordinate system.

Figure 2. Two parallel solar panels at a small distanceh apart from each other.

(EFIE). The method of moments is applied to solve this equation. In this method the local basis
functions are defined by the classical Glisson-Rao vector functions on a triangular surface grid.

2. Structural-acoustic analysis of solar arrays

On earth the dynamic behaviour of solar arrays is investigated by ground vibration tests. The
results of these tests are verified by performing modal analysis using a finite-element model in
vacuum,i.e. the effects of the surrounding air in the test environment are neglected. When the
results of the ground vibration tests and the modal analysis are compared, deviations of more
than 10 % are observed with regard to the eigenfrequencies. In this section a computational
model is described to estimate the acoustic effect of the surrounding air on the harmonic
vibration of a single solar panel (see Figure 1) and an array of two parallel solar panels in
close proximity (see Figure 2). The analysis involves the solution of a hypersingular integral
equation. For low frequencies, it will be shown that the vibrating air behaves as a virtual mass
which can be added to the mass of the panel. For the case of two parallel solar panels in close
proximity, a structural-acoustic analysis is presented which is based on the modal analysis of a
single solar panel. The acoustic energy of the vibrating air on the panels is estimated in terms
of the small distanceh between the two panels. The consequences of these energy estimates
on the values of the lowest eigenfrequencies of two vibrating panels are discussed.

2.1. MATHEMATICAL FORMULATION

The solar panels are modelled as screens,i.e. smooth open surfaces inR3. The structural
analysis is based on the Reissner-Mindlin theory for moderately thick plates. This theory
assumes that the in plane displacementsw1 andw2 have the form

w1(x, y, z) = zβ1(x, y), w2(x, y, z) = zβ2(x, y) (1)

and that the normal displacementw3 has the form

w3(x, y, z) = w(x, y). (2)
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The dynamics of a single harmonically vibrating panel is governed by the weak formulation:
find a displacement fieldw = (w1, w2, w3)

T of the form (1) – (2) such that

K(v, w)− ρω2M(v, w) = (n · v, µ) (3)

for all possible virtual displacement fieldsv of form (1) – (2). Here,K(v, w) andM(v, w)

denote, respectively, the first variation of the strain energy and the kinetic energy, which
are given in [4]. Furthermore,ρ denotes the density of the solar panels andω the angular
frequency. The right-hand side of (3) represents the acoustic work over the virtual normal
displacementn · v by the acoustic pressure jump

µ = p+ − p−, (4)

with p+ ( p−) denoting the pressure on the upper (lower) side of the solar panel. Hence,

(n · v, µ) =
∫

�

n · v µ dS, (5)

where� is the domain of the plate. When the solar array consists of multiple panels, Equation
(3) holds for each panel.

First consider the single solar panel (Figure 1). If the panel vibrates in vacuum, thenµ = 0.
In this case (3) corresponds with a classical eigenvalue problem. The solution of this problem
yields the vibration modes and the eigenfrequencies of the panel in vacuum. However, if the
panel vibrates in air, the pressure jumpµ does not in general vanish. Below, an expression for
µ in terms ofwn = n · w is derived, which changes (3) into a perturbed eigenvalue problem.
The acoustics are governed by the Helmholtz equation. The sound pressure of the vibrating
air satisfies the following boundary-integral formula

p(r) = −
∫

�

∂G

∂n ′
(r , r ′)µ(r ′) dS ′, r ∈ R3 \�, (6)

whereG represents the fundamental solution of the Helmholtz equation in an infinite domain,

G(r, r ′) = e−jk|r−r ′|

4π |r − r ′| , ∀r 6= r ′, (7)

with k the wave number (k = ω/c with c the speed of sound).
The vibrating panel and the vibrating air are coupled by the acoustic coupling equation

∂p

∂n
= ρaω

2wn, (8)

whereρa is the density of the air. Application of this boundary condition to the boundary-
integral formula (6) yields the hypersingular integral equation

−−
∫

�

∂2G

∂n∂n ′
(r , r ′)µ(r ′) dS ′ = ρaω

2wn(r), r ∈ �, (9)

or in operator notation:

T µ = ρaω
2wn. (10)
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In Equation (9), the integral−∫ is defined as a finite-part integral in the sense of Hadamard.
The mathematical aspects of the integral equation (9), as defined on screens inR3, have been
studied in detail by Stephan [5]. In that paper it has been proved that the operatorT defines a
continuous mapping from̃Hs(�) ontoHs−1(�) for any real numbers. HereH̃ s(�) is defined
as in [5]: if V is a bounded domain with smooth boundary0 and� ⊂ 0, thenH̃ s(�) = {u ∈
Hs(0) : suppu ⊂ �}. The inverse of the operatorT exists as a continuous mapping from
H−1/2(�) onto H̃ 1/2(�), (see [5], theorem 2.7), so that (10) yields the following expression
for the pressure jump in terms ofwn

µ = ρaω
2T −1wn. (11)

When this expression is substituted in (3) the following coupled differential boundary-integral
equation is obtained

K(v, w)− ρω2M(v, w)− ρε ω2(vn, T
−1wn) = 0, ε = ρa

ρ
. (12)

Note thatε has no physical dimension. For metallic platesε is so small that the last term in
(12) may be neglected in the structural-acoustic analysis. For solar panels, however,ε is of
the order of 0·01, and it will be shown in this paper that then the vibrating air does have a
nonnegligible effect on the values of the eigenfrequencies.

Equation (12) defines a compactly perturbed eigenvalue problem. The problem depends in
a non linear way onω2, due to the implicit occurrence ofω in T through the Green function
G via k = ω/c. Equation (12) can be solved by means of an iteration process for each
eigenfrequency: solve fori = 1, 2, 3, . . .

K(v, wi )− ρω2
i M(v, wi )− ρε ω2

i (vn, T
−1
ωi−1

wn,i) = 0. (13)

The dependence ofT on ω is stressed by the notationTω. Initial values for the eigenmodes
and eigenfrequencies are obtained from the solution of (12) in vacuum whereε = 0. The
eigenfrequencies in vacuum are used to evaluateTω0. The convergence of this iteration process
has been investigated in [6].

The numerical calculations are based on the simultaneous solution of differential equation
(3) and boundary-integral equation (10) in terms of the following weak formulation: find
nontrivial w ∈ (H 1(�))3, µ ∈ H̃ 1/2(�) andω ∈ R1 such that

K(v, w)− ρω2M(v, w)− (n · v, µ) = 0, (14)

−(ξ, n ·w)+ 1

ρaω
2
(ξ, T µ) = 0, (15)

for all v ∈ (H 1(�))3, ξ ∈ H̃ 1/2(�). The bilinear form(ξ, T µ) in (15) reads

(ξ, T µ) = −
∫

�

−
∫

�

∂2G

∂n∂n ′
(r , r ′)ν(r ′)ξ(r) dS ′ dS. (16)

Equation (14) is discretized by finite elements and Equation (15) by boundary elements.
The hypersingular integral operator is regularised through integration by parts. In view of

the fact thatµ andξ vanish along the edges of the plates (i.e.no pressure jump along∂�) and
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thatG is the fundamental solution of the Helmholtz operator, the following expression can be
derived for(ξ, T µ) (see also [7]),

(ξ, T µ) =
∫

�

∫
�

G(r, r ′) 〈nr × ∇rξ(r), nr ′ × ∇r ′µ(r ′)〉 dS ′ dS

−k2
∫

�

∫
�

G(r, r ′) µ(r ′) ξ(r) 〈nr , nr ′ 〉 dS ′ dS, (17)

where〈a, b〉 denotes the inner product ofa andb. Note that (17) contains only weakly singular
integrals.

2.2. LOW-FREQUENCY ANALYSIS

For low frequencies, the Green functionG can be approximated by

G(r, r ′) = 1

4π |r − r ′| −
jk

4π
+O(k2). (18)

When this approximation is substituted in Equation (17), it follows that

(ξ, T µ) =
∫

�

∫
�

1

4π |r − r ′| 〈nr × ∇rξ(r), nr ′ × ∇r ′µ(r ′)〉 dS ′ dS

− jk

4π

∫
�

∫
�

〈nr × ∇rξ(r), nr ′ × ∇r ′µ(r ′)〉 dS ′ dS +O(k2). (19)

Similarly, the operatorT may be approximated by (compare (9) and (10))

T = T0− jkD0+O(k2), (20)

whereT0 andD0 are defined by the bilinear forms in the right hand side of (19). It can be
proved that the operatorT0 is positive definite onH̃ 1/2(�). The inverse of this approximation
for T reads

T −1 = T −1
0 + jkT −1

0 D0T
−1
0 +O(k2), (21)

so that Equation (12) can be approximated up to third order inω by

K(v, w)− ρω2M(v, w)− ρε ω2(n · v, T −1
0 n · w)

+(jω)3 ρε

c
(n · v, T −1

0 D0T
−1

0 n · w) = 0. (22)

Note that the first term of (21) can be seen as a virtual mass (of the vibrating air), which
is added to the mass of the solar panel. The second term of (21) induces the last term in
Equation (22), which is proportional toω3. For low frequencies the contribution of this term
to the perturbation of the eigenfrequencies is small.

2.3. TWO PARALLEL SOLAR PANELS

For the case of two parallel solar panels (modelled as two rectangular plates�1 and�2), at a
small distanceh apart from each other (see Figure 2), the mathematical formulation is adjusted
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when� is defined as� = �1 ∪ �2. The acoustic coupling Equation (8) is applied to both
plates�1 and�2, so that the following system of boundary-integral equations is obtained,

T11µ1 + T12µ2 = ρaω
2 n · w1, on�1,

T21µ1 + T22µ2 = ρaω
2 n · w2, on�2, (23)

whereµi andwi (i = 1,2) denote the jump in the acoustic pressure and the displacement
field on�i, respectively. The boundary-integral operatorsTij are given by

Tijµj (r) = −−
∫

�j

∂2G

∂n∂n ′
(r , r ′)µj(r ′) dS ′, r ∈ �i. (24)

Observe that the integral operatorsT11 andT22 correspond to the operatorT of (10). Hence

T11 = T22= T . (25)

The operatorsT12 andT21 model the acoustic effects that the plates have upon each other. The
weak formulation (15) is used for the solution of (23). The bilinear form related toT12 is, see
(17),

(ξ1, T12µ2) =
∫

�1

∫
�2

G(r, r ′) {〈n×∇ξ1, n ′ × ∇′µ2〉 − k2ξ1µ2〈n, n ′〉} dS ′ dS. (26)

These integrals are of regular type, but their evaluation by means of numerical integration
rules has to be carried out carefully, because the Green functionG behaves as 1/h if |r − r ′|
is small (i.e.when r and r ′ are opposite to each other). Appropriate quadrature formulas
have been presented in [8]. Obviously, the above formulation can be extended to a solar array
consisting of an arbitrary number of panels.

2.4. ESTIMATES OF ACOUSTIC ENERGY

For a single vibrating panel the acoustic energy of the vibrating air on a solar panel is propor-
tional to

A1 =
∫

�

n ·w µ dS, with µ = ρaω
2 T −1 n · w. (27)

Similarly, for two vibrating panels the acoustic energy is related to

A2 =
∫

�1∪�2

W · µ dS, (28)

with

W =
(

n ·w1

n ·w2

)
and µ = ρaω

2Z−1W, (29)

whereZ corresponds to the matrix of operators on the left-hand side of Equation (23),

Z =
(

T11 T12

T21 T22

)
. (30)
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When the distance between the panels is large, there is no interaction between the panels
(T12 = T21= 0 in Equation (23)). Then,µ1 = ρaω

2 T −1 n ·w1 andµ2 = ρaω
2 T −1 n ·w2. As

a consequence, the acoustic energy corresponds to the energy of two single solar panels,i.e.

A2 = ρaω
2

(∫
�1

n · w1T
−1n · w1 dS +

∫
�2

n ·w2T
−1n ·w2 dS

)
. (31)

For panels in close proximity, a first-order expansion ofT12 in terms ofh has been derived
in [9]. It was shown thatT12 may be approximated up to first order inh by

T12 = T − 1
2hV, (32)

where the operatorV is related to the weak formulation of the Helmholtz equation,i.e. ,

(ξ, V µ) =
∫

�1

(∇sµ · ∇sξ − k2ξµ) dS, (33)

with ξ = µ = 0 on the edge of�1. A similar relation holds forT21. Equations (23), (25) and
(32) can now be used to estimate the acoustic effects of in-phase vibration of the panels (given
by w1 = w2 = w) and out-of-phase vibration (given byw1 = −w2 = w).

If the panels are vibrating in-phase, the pressure jumps over the panels is given by

µ1 = µ2 = 1
2ρaω

2(T −1+ 1
4hT −1V T −1) n ·w. (34)

Then, the acoustic energyA2 becomes for small values ofh, compare (27),

A2 = ρaω
2

(∫
�1

n ·w T −1 n · w dS + 1

4
h

∫
�1

n · w T −1V T −1 n · w dS

)
= A1+O(h). (35)

Comparison of this expression with (31) shows that, when the distanceh between the panels
tends to zero, the acoustic energy tends to half the value for two single solar panels (without
interaction). For small values ofh, the acoustic energy of two in-phase vibrating panels thus
corresponds to the acoustic energy of a single solar panel with air on both sides, but with half
the value of the air density.

When the panels are vibrating out-of-phase, it follows from (23), (25) and (32) that

µ1 = −µ2 = ρaω
2 2

h
V −1n · w. (36)

Then, the acoustic energyA2 becomes for small values ofh,

A2 = ρaω
2 4

h

∫
�1

n ·w V −1 n ·w dS, (37)

which is completely different from the relation (35) for in-phase vibrating panels. Now the
acoustic effects are dominated by the vibrating air between the panels, and the acoustic energy
is inversely proportional to the distanceh. When the panels vibrate out-of-phase, the air is
pumped in and out of the gap between the panels, which causes a large energy transfer from
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the panels to the air in the gap. So far it has been assumed that the air could be treated as in-
viscid. For narrow gaps, however, the viscosity of the air cannot be neglected for out-of-phase
vibration. A more sophisticated model (including effects of inertia, viscosity, compressibility
and thermal conductivity) has been presented in [10]. It is shown there that the viscosity of the
air results in a significant amount of damping when the distance between the panels is small.

2.5. NUMERICAL SOLUTION

The cross-sectional rotationsβ1, β2 and the normal displacementw in Equations (1) – (2) are
approximated by the four-nodedC0 elements of [11]. This finite-element approximation of
Equation (14) yields the following system of algebraic equations

(K − ω2M)U = Fa. (38)

The matricesK andM are the stiffness and mass matrix of the solar array, respectively. The
vectorU contains the nodal displacements. The load vectorFa, due to the pressure jumpµ, is
given by

Fa = CT J, (39)

in whichC is the matrix which couples the displacement degrees of freedom with the pressure
jump degrees of freedom. The vectorJ contains the nodal pressure jumps.

The boundary-integral equation (15) is solved by a boundary-element method on a trian-
gular surface grid of which the nodes correspond to the nodes of the quadrilateral mesh of
the structural four-nodedC0 elements. The computational aspects of this boundary-element
method have been described in [8], where special attention has been given to the evaluation of
singular and nearly singular integrals. For (15) the discrete system of equations becomes

T J = ρa ω2 C U. (40)

Substitution of (40) in Equations (38) and (39) yields

(K − ρω2(M +Ma))U = 0, (41)

with Ma = ε CT T −1C. For low frequencies the matrixMa can be approximated by (compare
Equation (22)),

Ma = ε CT T −1
0 C − jω

ε

c
CT T −1

0 D0T
−1

0 C. (42)

When the second term of (42) is neglected, the lowest eigenfrequency of Equation (41) reads

ω2 = 〈KU1, U1〉
〈MU1, U1〉 + 〈Ma,0U1, U1〉 , (43)

whereU1 is the eigenmode corresponding to the lowest eigenfrequency andMa,0 represents
the first term of (42). By the bijectivity ofT0 and its positive definiteness, it follows that
〈Ma,0U1, U1〉 > 0. From (43) it follows that the lowest eigenfrequency of the problem in air
(41) will be smaller than the corresponding eigenfrequency of the problem in vacuum.
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Figure 3. Two parallel panels: influence panel distanceh on the eigenfrequencies of the first (pair of) eigenmodes.

Figure 4. Two parallel panels: influence panel distanceh on the eigenfrequencies of the second (pair of)
eigenmodes.

2.6. APPLICATIONS

The computational model of the previous section has been applied to representative flat solar-
array panels. The solar panels are sandwich panels with different core and fairing properties.
For the analysis the panels are modelled as monolithic plates having the same mass per unit
area and bending stiffness. The basic properties of the panels are: length 1·675 m, width
1·25 m, thickness 0·001 m, elasticity modulus 4·5444E+13 N/m2, Poisson’s ratio 0·3, density
ρ = 1122·2 kg/m3. The panels are simply supported along the short edges. The large edges
are free. The computational mesh on a single panel consists of 16×16 quadrilateral elements.
The triangular grid for the numerical solution of Equation (15) is obtained by the subdivi-
sion of each quadrilateral element into two parts. The density and the speed of sound of the
surrounding air areρa = 1·2 kg/m3 andc = 340 m/s.

For a single solar panel (with the above properties) the eigenfrequencies of the first five
eigenmodes are given in Table 1. The in-air eigenfrequencies are computed by means of the
iterative procedure discussed with Equation (13). When the in-vacuum and in-air frequencies
are compared, it is observed that the air has a large influence on the dynamic behaviour of a
single panel. The eigenfrequencies are shifted downwards significantly, as could be expected,
since the panel experiences the air as an added mass (see Equation (43)).
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Table 1. Eigenfrequencies (in Hz) of a single panel in vacuum
and in air

mode 1 2 3 4 5

in-vacuum 33·25 68·58 136·67 182·31 192·25

in-air 25·30 59·14 110·21 158·02 166·98

For two solar panels in close proximity (see Figure 2), Figures 3 and 4 display the eigen-
frequencies of the first and second pair of eigenmodes. A pair of eigenmodes consists of the
two cases where the panels vibrate in-phase and out-of-phase, in each case with the same
eigenmode per panel. Figures 3 and 4 show that the panels do not influence each other when
the distance is large. Both in-phase and out-of-phase they have the same frequency, which is
equal to the eigenfrequency of the single panel in air (see the third row of Table (1)). This
could be expected from the mathematical formulation (see Equation (31)).

For small gap widthh the effects on the eigenvalues are completely different for in-phase
vibration and out-of-phase vibration, as could be expected from Equations (35) and (37). The
in-phase vibrating panels will feel only the air on one side of the panel. From Equation (35) it
follows that the acoustic energy of two in-phase vibrating panels corresponds to the acoustic
energy of a single solar panel with air on both sides, but with half the value of the density. As a
consequence, the value of〈MaU1, U1〉 in (43) for two panels should converge to half the value
for a single solar panel. According to (42) and (43), for small values ofh, the frequencies of
two in-phase vibrating panels should converge to the frequency of a single solar panel with
air on both sides, but with half the value of its density. The first two eigenfrequencies of the
latter problem have been calculated as 28·45 Hz and 63·45 Hz. Inspection of Figures 3 and 4
reveals that the eigenfrequencies of the in-phase vibrating panels converge correctly to these
limit values.

For two out-of-phase vibrating panels (close to each other) the acoustic energy is inversely
proportional to the distanceh, as follows from Equation (37). As a consequence, the value
of 〈MaU1, U1〉 for two out-of-phase panels tends to∞ ash tends to zero. As follows from
(43), for small values ofh, the eigenfrequencies of two out-of-phase vibrating panels should
converge to zero. This is confirmed by the results of Figure 3.

3. Radar-Cross-Section (RCS) calculations

RCS predictions of aerospace platforms are essential to assess their visibility under radar sur-
veillance. This requires the calculation of the electromagnetic field scattered by the platform
when illuminated by a plane electromagnetic wave (the incident radar beam). For a large range
of illumination angles the scattered field is governed by reflections from the external surface
and by diffraction from sharp edges, such as the leading or trailing edge of the wing. To a
certain extent, this field can be determined by approximate high-frequency methods based on
physical and geometrical optics (see [12]). For nose-on illumination, however, the scattered
field is dominated by multiple reflections from the interior surface of the engine inlet, which
is a re-entrant cavity. The compressor stage of the inlet blocks the waves and reflects them
back. The number of reflections inside the inlet depends strongly on the angle under which
the beam enters, and on the geometry of the inlet. It will be shown that the scattered field from
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the inlet results in a large, broad RCS lobe. The interactions between the multiply reflected
waves require the application of more sophisticated methods (solving the Maxwell equations).
In the present paper the applicability of boundary-integral-equation methods is discussed. The
interior surface of the engine inlets is modelled as a three-dimensional perfectly conducting
cavity-like screen.

3.1. MATHEMATICAL FORMULATION

The electromagnetic fields satisfy the Maxwell equations and appropriate boundary con-
ditions. For RCS calculations the electromagnetic field scattered by the object has to be
determined, due to a plane wave (with direction vectorki) illuminating the object. With the
incident plane wave an electric field is associated with directionei and magnitudeE0. The
incident electric and magnetic fields are specified as:

Ei = eiE0 e−jkki ·r , Hi = √ε/µ ki × Ei . (44)

The total electromagnetic field in the domain outside the scattering object is written as the
sum of the incident field and the scattered field,

ET = Ei + Es, HT = Hi + Hs . (45)

In a homogeneous source-free region the scattered field around a metallic object (i.e. a per-
fect electric conductor), with boundaryS, can be represented by the Stratton-Chu boundary-
integral formulas ([13], pp. 464–467) in terms of the electric surface currentJ. The formula
for the scattered electric fieldEs reads

Es(r) =
∫

S

{
−jωµJG− 1

jωε
(∇ · J)∇G

}
dS, ∀r 6∈ S. (46)

For the scattered magnetic fieldHs holds

Hs(r) =
∫

S

J× ∇G dS, ∀r 6∈ S. (47)

Here,ω the angular frequency of the electromagnetic field,µ the permeability of the free space
(µ = 4π10−7) andε the permittivity of the free space (ε = 10−9/36π). The Green functionG
represents the fundamental solution of the Helmholtz equation (see Equation (7)). The wave
numberk in (7) is given byk = ω

√
εµ = 2π/λ, with λ the wavelength of the incident field.

The integral formulations (46) and (47) can be derived from the vector Helmholtz equations
when a vector equivalent of Green’s second identity is used and the property that the total field
is zero insideS (seee.g.[14], pp. 130–132). The vector operations in (46) and (47) are to be
performed in source coordinates.

The electric surface currentJ in Equations (46) and (47) is equal to the tangential compo-
nent of the total magnetic surface field overS,

J = n×HT , (48)

with n the outward normal toS.
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For the special case of a perfect electrically conducting object, the tangential components
of the total electric surface field are zero,

n× ET = 0. (49)

Substitution of (45) and (46) in the boundary condition (49) yields the Electric-Field Integral
Equation (EFIE)

n×
∫

S

{
jωµJG+ 1

jωε
(∇ · J)∇G

}
dS = n× Ei . (50)

The Magnetic-Field Integral Equation (MFIE) follows from Equations (45), (47) and (48),

J = n×HT = n× Hi + n×
∫

S

J×∇G dS + 1
2J. (51)

The last term in (51) follows from the jump relations of classical potential theory. This equa-
tion subsequently reduces to

1
2J− n×

∫
S

J×∇G dS = n× Hi . (52)

This is the general form of the MFIE, which is valid only for closed surfaces. For screens the
EFIE has to be used. Since engine inlets of fighter aircraft are usually geometrically modelled
as cavity-like screens, computational tools are being developed for the numerical solution of
(50) in terms of a weak formulation. Multiply (50) by a tangential test functionW. Then,
the following weak formulation can be derived: find the complex surface current vectorJ ∈
H̃
−1/2

div (S), with the solution space as presented in [5], such that

j

ωε

∫
S

∫
S

{k2J.W′ G− (divJ)(div′W′) G} dS′ dS =
∫

S

Ei .W′ dS, (53)

for all W′ ∈ H̃
−1/2

div (S). Equation (53) describes the behaviour of the surface current on the

object surface, as induced by the incident electromagnetic fieldEi. Once a solution of (53)
has been found, the scattered electric field can be determined by applying the Stratton-Chu
representation formula (46), or its far field asymptotic approximation.

When the objectS represents a screen, it contains a boundary edge, which is denoted by∂S.
Let ν be the unit normal along∂S, in the tangent plane toS. Along ∂S the normal component
ν · J may not jump. Hence, for screens it is required that

ν · J = 0, along∂S. (54)

Mathematical aspects, such as existence, uniqueness and regularity of solutions, of (53) for
screen problems have been discussed in [15].

In Section 3.3 the accuracy of the numerical solutions of (53) is assessed. There, the results
of (53) are compared with the results of two-dimensional models. To this end, consider a
scatter problem in two-dimensional space for the case where the object has no variation in
z-direction. Let0 be the two-dimensional cross-section boundary of the object. Then the
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Electric-Field Integral Equation (53) can be reduced to two independent scalar equations: one
for Transverse Magnetic (T Mz) polarization (where the direction of the incident electric field
Ei is aligned with thez-axis), and one for Transverse Electric (T Ez) polarization (where the
direction of the incident magnetic fieldHi is aligned with thez-axis).

ForT Mz polarization the weak formulation reads: find the currentJ ∈ H−1/2(0) such that

ωµ

4

∫
0

∫
0

ψ(ρ)J (ρ ′)H (2)
0 (k | ρ − ρ ′ |) d0′ d0 =

∫
0

Ei
z(ρ)ψ(ρ) d0, (55)

for all ψ ∈ H−1/2(0). For T Ez polarization the weak formulation reads: findJ ∈ H
1/2
0 (0)

such that

1

4ωε

∫
0

∫
0

{
k2(c(ρ).c(ρ ′))ψ(ρ)J (ρ ′)− dψ(ρ)

dc

dJ (ρ ′)
dc

}
H

(2)
0 (k | ρ − ρ ′ |) d0′ d0 =

∫
0

Ei
c(ρ)ψ(ρ) d0, (56)

for all ψ ∈ H
1/2
0 (0). HereH

(2)
0 the Hankel-function of the second kind,c the unit tangential

vector along the boundary0, ρ a point on the boundary0, Ei
z thez-component of the incident

electric field, andEi
c the tangential component of the incident electric field.

When the boundary0 is not closed, the electric currentJ in Equation (56) has to vanish at
the end-points of the boundary. This criterion corresponds to requirement (54) for screens in
three-dimensional space.

3.2. NUMERICAL SOLUTION

The surface currentJ in Equation (53) is approximated by

J = 6nInJn, (57)

whereIn are constants to be determined. The basis functionsJn are defined by the classical
Glisson-Rao vector functions on a triangular surface grid (see [16]). Insert the representation
(57) into the EFIE (53) and take the test functions equal to the basis functions. Then, a system
of linear equations is obtained of the formZI = V . The elements of the impedance matrixZ

are given explicitly by

Zmn = j

ωε

∫
S

∫
S

{k2Jm · J′n G− (divJm)(div′J′n) G} dS′ dS, ∀(m, n). (58)

The Glisson-Rao basis functions were selected because of their applicability to a general
class of geometries and for reasons of accuracy and efficiency (see also [16]). These basis
functions have local support on a pair of triangles sharing a common edge, so that the inner
(respectively outer) integration on the right-hand side of expression (58) is restricted to the
support ofJ′n (respectivelyJm) only. Thus, the double integral in (58) involves at most four
triangles. Different types of quadrature rules are applied to calculate (58), depending on the
required integration accuracy. The Glisson-Rao basis functions have a continuous normal
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Figure 5. Rectangular inlet with lengtha = 10λ, width d = 2λ, heigthc = 2λ.

Figure 6. Comparison of RCS calculations for rectangular inlet in Figure 5.

component when crossing the common edge. The unknownsIn in (57) are attached to com-
mon edges. When the scattering object defines a screen, edges of triangular patches have no
neighbouring counterpart along the boundary∂S. At these edgesIn = 0 according to (54).
The computational model based on the above approach is called EFIE3D.

The two-dimensional electric field integral equations (55) and (56) have been solved nu-
merically by means of a boundary-element Galerkin method. The boundary0 of the object
is partitioned into a number of segments and the electric currents are approximated by local
functions on the boundary. In Equation (55) the basis and test functions are taken piecewise
constant, whereas they are taken piecewise linear in Equation (56). This numerical approach
has resulted in the EFIE2D computational model.

3.3. ACCURACY OFRCSPREDICTIONS

The RCS of an object is defined asσ = limr→∞ 4πr2|Es|2/|Ei|2, wherer is the distance
from object to observer. The dimension ofσ is area, usually in square meters, or it may be
nondimensionalized by division of the wavelength squared,σ/λ2. When the transmitter and
receiver are at the same location, the RCS is usually referred to as monostatic. It is referred to
as bistatic when the two are at different locations.

In order to assess the accuracy of the RCS predictions the EFIE3D model has been applied
to a rectangular inlet with length 10λ, width 2λ and height 2λ. The geometry of this inlet is
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Figure 7. Assessment of accuracy of RCS calculations for rectangular inlet in Figure 5.

shown in Figure 5. The calculations have been carried out on uniform triangular surface grids
which are planar symmetric about the planesy = 0 andz = 0. The surface grids are obtained
as follows. First, a uniform rectangular grid is generated with mesh-sizeh. Subsequently, each
quadrilateral element is divided into two triangular elements.

The accuracy of the computed RCS is assessed in two ways:

(i) by a comparison of the RCS results with the results of the EFIE2D model for an infinite
rectangular inlet (cross section 10λ× 2λ extending fromz = −∞ to z = +∞, and

(ii) by refinement of the grid.

In Figure 6 the RCS predictions of the EFIE3D model are compared with the predictions
of the EFIE2D model. The 3D calculations have been carried out on the uniform triangular
grid with a characteristic meshsize ofh = λ/7. It is observed that the three-dimensional
results show the same scattering characteristics as do the two dimensional results. ForT Mz-
polarization the scattering of the 3D inlet and the 2D inlet are expected to agree because the
direction of the incident electric field is parallel to thez-axis. Therefore the horizontal plates
of the 3D inlet will not contribute to the RCS, because the right-hand side of (50) vanishes
at these plates. This is confirmed by Figure 6, although in the interval betweenφ = 10◦ and
φ = 60◦ the RCS of EFIE 3D is slightly higher, due to the rather coarse sampling that has been
used in the EFIE3D model. ForT Ez-polarization the higher values of the 3D RCS predictions
in this interval are mainly due to the contributions of the horizontal plates of the 3D inlet
which are not present in the 2D computations.

The convergence of the 3D RCS predictions is assessed in Figure 7, where results are
presented of EFIE3D calculations on uniformly triangular discretizations with meshsizes of
h = λ/3,h = λ/5 andh = λ/7, respectively. This figure apparently reveals that the triangular
discretization with meshsizeh = λ/3 is too coarse to get an accurate RCS prediction at the
open side of the inlet. The RCS predictions of the EFIE3D model improve when the mesh is
refined. For a discretization with meshsizeh = λ/7 reliable RCS results are obtained.
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Figure 8. Computational surface grid of a curved engine inlet with square entrance (4454 panels) at a frequency
of 1.5 GHz; the length of the inlet is about 4 meter.

Figure 9. Calculated bistatic RCS of a curved inlet for an illumination angleφ = −25◦, θ = 90◦, and radar
frequency 1.5 GHz.

3.4. APPLICATION TO AN ENGINE INLET

The EFIE3D model has been applied to analyse the RCS of a curved engine inlet with a square
entrance (Figure 8). It has a curved axis of 4 meters length. The surface has been approximated
by 4454 triangular patches (Figure 8). The coordinate system (see Figure 8) has been chosen
such that the inlet is illuminated on the open side atφ = 0◦, θ = 90◦. At a frequency of
1·5 GHz (wavelength 20 cm) and an illumination angle ofφ = −25◦, θ = 90◦, the scattered
electric field has been computed. In Figure 9 the bistatic RCS characteristics are displayed
with the observer in thexy− plane (i.e. θ = 90◦). The maximum aroundφ = 155◦ (the
‘forward lobe’) arises from the scattered electric field compensating for the incident field.
The peak nearφ = −165◦ is due to single reflection of the incident waves. The bistatic cross
section is rather small in the vicinity of−90◦ or+90◦ as the receiver direction is perpendicular
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to the direction of the incident field. Thus, the shape of the inlet is such that there is hardly any
scattering in these directions. Most of the scattering in this scattering range is due to diffraction
on the sharp edges at the top and bottom of the inlet entrance. In the neighbourhood ofφ = 0◦
the scattering cross section has a smoother behaviour due to the fact that waves coming out
of the inlet have multiply reflected inside. The local maximum in the vicinity ofφ = ±25◦ is
caused mainly by multiple reflections at the inlet wall and the inlet face. From this observation
point the inlet face and the local maxima of the surface current can be ‘seen’.

3.5. APPLICABILITY OF BOUNDARY-INTEGRAL EQUATION METHODS

The applicability of the computational model as described in Section 3.2 is frequency limited
because of the numerical approach involved in the model and due to computer hardware lim-
itations. On the currently available supercomputers the model can be applied to engine inlets
of fighter aircraft up to radar frequencies of about 1 GHz. For higher frequencies the compu-
tation times become too large and the computer storage required is not available. Therefore,
many research efforts are aimed at increasing the applicability of boundary-integral-equation
methods to higher frequencies. A promising approach appears to be the application of entire-
domain functions (seee.g.[17]). These functions have global support instead of local support
on triangular patches. It is foreseen that the dimension of the impedance matrix will then
decrease, so that the integral-equation methods will become applicable to higher frequen-
cies. Similar entire-domain functions were used by Multhopp [1] in the 1950’s to predict
the lift distribution on wings in the subsonic speed regime. The use of these functions was
advantageous from the point of view that a small system of equations results, which could
be solved by the computational means available at that time. The mathematical formulation
of entire-domain functions requires that the surface can be mapped onto a simple rectangular
computational domain. Therefore, geometries like engine inlets have to be decomposed into
subdomains, in such a way that each part can be represented by a continuous mapping;e.g.
the surface of the engine inlet of Figure 8 has to be decomposed into two parts, one part
describing the circumferential boundary and a second part describing the rear face. Then, at
each part appropriate entire-domain functions are defined. Along the common edges of the
subdomains the entire-domain functions have to match. In general, this is a difficult task.
Therefore, it is recommended to apply the classical Glisson-Rao basis functions (with local
support) only in the neighbourhood of the edges, and to apply the entire-domain functions
elsewhere. This approach involves the specification of so-called cut-off functions that define
the region where the local basis functions are used. At the National Aerospace Laboratory
NLR the applicability of this approach is being investigated for the numerical solution of the
two-dimensional electric-field integral equations (55) and (56). It appears that the computation
of the coefficients of the impedance matrix requires the numerical calculation of integrals
with strongly oscillating integrands. Integration techniques such as those developed in the
1960’s (e.g.[18]) are essential to decrease the computational costs for the calculation of the
impedance matrix.

An alternative approach to increase the applicability of boundary-integral-equation meth-
ods to higher frequencies is the development of parallel algorithms for the solution of (53) and
the implementation on parallel hardware architectures (seee.g.[19]).
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4. Concluding remarks

In the present paper two problems in aerospace research have been addressed which in-
volve the numerical solution of boundary-integral equations on screens. The first problem
is concerned with the structural-acoustic analysis of light-weight solar array panels, which
are geometrically modelled as screens. The second problem is related to RCS predictions of
engine inlets of fighter aircraft, where the interior surface of the engine inlet is modelled as a
perfectly conducting cavity-like screen.

The acoustic effects of the surrounding air on the dynamic behaviour of solar arrays have
been analysed for two cases: a single solar panel and an array consisting of two parallel solar
panels in close proximity. For low frequencies, the single solar panel experiences the air as an
added virtual mass. As a consequence, the computed eigenfrequencies are shifted downwards
significantly. For two parallel panels, estimates for the acoustic energy of the vibrating air
have been derived in terms of the small distanceh between the two panels. Forh tending to
zero, the acoustic energy of two in-phase vibrating panels tends to half the value for two single
solar panels (without interaction). For two out-of-phase vibrating panels the acoustic energy
is inversely proportional to the distanceh, whenh tends to zero. Inspection of the computed
eigenfrequencies has confirmed that the behaviour of the lowest eigenfrequencies is consistent
with these energy estimates for small values ofh.

RCS predictions of engine inlets of fighter aircraft are obtained by a boundary-integral-
equation method for the solution of the electric-field integral equation. The accuracy of RCS
predictions has been assessed for a rectangular inlet with length 10λ, width 2λ and height 2λ.
From the results of Section 3.3 it is obvious that multiple reflections inside engine inlets can
be accurately modelled provided that surface grids are used with at least seven patches per
wavelength in one direction (i.e. h = λ/7). The boundary-integral-equation method has been
applied to analyse the RCS of a curved engine inlet with a square entrance. At the open side
the computed RCS shows broad smooth lobes, which are caused by multiple reflections at the
inside wall of the inlet.

The numerical methods to solve the boundary-integral equations of the above problems use
local basis functions on triangular surface grids. They require the generation of a complex-
valued matrix. The dimensionN of this matrix is proportional to the square of the frequency.
The computational cost for solving the equations is proportional toN3. For objects which are
large with respect to the wavelength, the numerical methods using these local basis functions
can become intractable, because the computational resources required are not available. In
particular, for RCS calculations the described boundary-integral methods can only be applied
to engine inlets of fighter aircraft up to radar frequencies of about 1 GHz on the currently avail-
able supercomputers. Many research investigations are going on, worldwide, to increase the
applicability of boundary-integral-equation methods to higher frequencies. Instead of using
local basis functions, there is renewed interest in the application of appropriate basis functions
with global support, which were also used to solve boundary-integral equations before digital
computers became available. The aim of these investigations is to decrease the dimension of
the matrix of influence coefficients and to lower the computer storage required.
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